
proBE–A BERTweet-Attentive Prototype
Few-shot Model for Event Detection in OSN

Sielvie Sharma
Department of Computer Engineering

Jamia Millia Islamia
New Delhi, India

sielvie@outlook.com

Muhammad Abulaish, SMIEEE
Department of Computer Science

South Asian University
New Delhi, India
abulaish@ieee.org

Tanvir Ahmad
Department of Computer Engineering

Jamia Millia Islamia
New Delhi, India
tahmad2@jmi.ac.in

Abstract—In the domain of digital communication, a
significant transition have occurred, with social networks
overtaking traditional news media outlets to become the
primary source of information on a global scale. This
evolution has given rise to a dynamic environment, where
user-generated content escalates at an exceptional pace.
However, managing this vast and ever-changing data poses
significant challenges. Annotating such voluminous and
dynamic information is not only financially burdensome but
also impractical in terms of feasibility. In addition, current
learning techniques face significant challenges when it
comes to identifying unseen or novel occurrences in social
network data, while also demanding a huge amount of
training data to operate effectively. This entails a new
era that emphasis on the need for less data and more
generalisation, similar to how humans interpret informa-
tion. To this end, in this research, we developed the model
proBE, which formalises event detection in online social
networks as a few-shot learning problem and offers a novel
perspective on it. The suggested method encodes the tweet
messages (aka tweets) with BERTweet, to capture context
with respect to inbuilt features of Twitter like hashtags,
emoticons and then employed an attentive prototype model
where, tweet attention and feature attention is applied
to highlight the contextually rich key tweets and the
prominent features, respectively. proBE is evaluated on real
world benchmark Twitter datasets CrisisLexT26 and
CrisisLexT6 and performs significantly better when
compared to various baseline methods in terms of accuracy,
F-score, precision and recall. To the best of our knowledge,
this is the first study that employs few-shot learning in event
detection in online social networks to overcome the sparsity
of labelled data due to the volatile dynamics of online social
networks and the inability of existing approaches to detect
unseen events even after enormous amount of training data.

Index Terms—Social Network Analysis, Few-shot Learn-
ing, BERTweet, Event Detection, Online Social Networks,
Attention Mechanisms

I. INTRODUCTION

The popularity of online social networks (OSNs) is
growing over time. The ease of availability and access
to information changed the entire concept of news dis-
tribution. In this day and age, users have more access
to every event around the world than in the past, when

the next day’s gazette is the only source to find out
what is going on around? At present, the availability
of news is not limited to designated news sources. Users
are also contributing to make news available by posting
it online in the shortest time possible and further all
other users have the access and right to share their
thoughts and opinions about it. There are many existing
online social networks like Twitter, Instagram and
Facebook, and yet Twitter is most popular among
all with millions of monthly active users and millions
of tweets per day. Added features like hashtags and
mentions changed the dynamics and dissemination of
information among users. Such vast and dynamic data
inspires a wide range of research opportunities to extract
useful information such as social bot detection, hate
speech detection, and many others. One such unfolding
study is event detection from online social networks. In
Natural Language Processing (NLP), event detection is
a task of information extraction to educe useful findings
from the vast amount of available data.
Event detection is dealt with different perspectives by
various researchers. Initial efforts employ approaches
that explored linguistic features and adopted statistical
methods [1], [2] and [3]. Moving on to supervised
approaches, the authors focused on neural networks
(such as CNN and RNN) to automatically learn required
features from large scale datasets, resulting in signif-
icantly improved performance. However, fail to detect
unseen events. In real-world scenarios, such as online
social networks, labelling all the available data can be a
challenging and laborious task. Due to above limitations
such as inability of labelling a large amount of data and
not able to detect unseen events, the authors focused on
unsupervised techniques [4], [5], which have their own
set of challenges ranging from tedious task to handle
copious data to computation intensive tasks.
To this end, few-shot learning is introduced in this work
with an attempt to address the aforementioned limitations
without relying on a large training dataset and detect
existing events in social network data. For each class,

Final version of the accepted paper. Cite as: "Sielvie Sharma, Muhammad Abulaish, and Tanvir Ahmad, proBE - A BERTweet-
Attentive Prototype Few-shot Model for Event Detection in OSN, In Proceedings of the 22nd IEEE/WIC International Conference
on Web Intelligence and Intelligent Agent Technology (WI-IAT), Venice, Italy, 26-29 October 2023, pp. 1-8."

most classification algorithms require a large amount
of training data. In contrast to that, few-shot learning
requires a very small number of training instances of
each class. Furthermore, unlike traditional classification,
where training and testing examples are drawn from
the same set, classes for training and testing are drawn
from separate or disjoint sets, which can also aid in
the resolution of the covariant shift issue that exists
widely in online social network data. The notion behind
few-shot learning is to explicitly train models to handle
novel classes which were never seen during training with
limited labelled examples. This work aims to learn a
more robust and generalisable representation that can
adapt to unseen classes during testing. The ability to
learn patterns and discriminate between features across
different classes lead to more accurate prediction despite
of having limited data. To this end, the ability of few-
shot learning to generalise to new classes with limited
amount of data is precisely what event detection in
online social networks requires. It allows the model to
adapt and perform well on unseen data by leveraging
the knowledge gained from the support set, even when
the distribution of the data changes between training and
testing phases.
The main contributions of the paper are:

• In light of the dynamic nature of social network
data, event detection in online social networks is
modelled as a few-shot learning problem.

• Extending the event detection in online social net-
works to unseen events.

• Emphasis is on low resource learning because la-
belling enormous diverse and dynamic social net-
work data is unrealistic.

• Addressing the inability of other existing ap-
proaches of detecting unseen events despite requir-
ing a considerable amount of training data.

Few-shot learning is a well-studied concept in image
classification, but it has received little attention in the
field of text (NLP). To this end, an attempt is made to
detect events utilising the benefits of few-shot learning
on unstructured informal online social network data. To
our best knowledge, this is the first work addressing the
problem detecting novel events in OSN with an attempt
of utilising low resource learning. The rest of the paper is
organised as follows. Section II presents a brief overview
of the existing literature on event detection, with a
focus on online social media. Section IV presents the
functioning details of the proposed approach. Section V
presents a detailed description of the experimental setup
and evaluation results. Finally, section VI concludes the
paper and presents future directions of research.

II. RELATED WORK

With the goal of detecting and locating events in the
stream of broadcast news, event detection research was
introduced [6]. With the time, social networks gained
popularity and so the inspiration to dig relevant infor-
mation which can be useful to people in many ways.
A detailed survey by the authors of [7], [8] and [9]
discussed different formulations of event detection by
various authors with respect to unsupervised , supervised
and semi supervised learning. Authors also discussed the
lack of benchmark datasets and no defined evaluation
measures in the area of event detection in online social
networks.
Initial efforts of [10], [6] and [11] mainly focused on
feature engineering, statistical and linguistic methods
[10], [1] to find events that are unknown to us prior the
detection. With the development of deep neural networks
[12] [13], many researchers opted it for solving event
detection problem by formulating it as a classification
problem[14], [13] and [15]. It also significantly improves
performance, but it fails to detect unknown events that
are not in training. Furthermore, a large amount of data
is required to train and the system still fails to detect
unseen events. Labelling social network data for a task is
impractical because data on online social network sites
is diverse and vast. When dealing with such massive
amounts of data, heavy computation is required, and
time is also a constraint. To detect unseen events, data
augmentation approaches are also introduced [16].
Few-shot learning makes it easier for the model to pick
up useful features without needing a lot of labelled data.
Early research concentrated on models of generative
transfer learning that take the target task from pre-trained
models. These techniques, however, are challenging to
use for real-world applications [17] since they demand
subject designated designs and are unable to adequately
capture the distribution’s characteristics. Matching net-
works were used by the authors of [18] to map a
small labelled support set and an unlabeled example
to their labels without the requirement for fine tuning
in order to accommodate new class types. Furthermore,
by calculating the distance between the query and the
prototype representations for each class, prototypical
networks [19] learn a metric space in which the model
can perform well. Then, categorisation of the query is
done to the prototype class that is the closest to the
query. Metric learning computes the distance between
the observed classes [19] [20] [18].
For a newly discovered few shot task like intention
classification, the authors of [18] recently proposed
an adaptive metric learning strategy that automatically
chooses the best weighted combination from a set of
metrics gathered through meta-training tasks. FewRel,

a relation classification dataset, is presented by [21],
which also adapts the most state-of-the-art few-shot
learning techniques for it. These approaches do not,
however, take semantic data mining or more precise
noise reduction into account. The concept of a quick
learner, who can generalise a new concept quickly, was
recently presented in the meta-learning [22]. The meta-
learning based on a deep neural network with fine tuning
has been improved by recent work by [23]. Among all
others, FSL (Few-shot Learning) -metric learning has
been demonstrated to be efficient and explicable for a
variety of reasons, including its well-researched theory of
the distance function and the ease of its implementation
in practise.
Significantly, state-of-the-art performance on a number
of FSL (Few-shot Learning) benchmarks is attained by
the prototype networks in metric learning. Although few-
shot learning is a well-researched job in image classifi-
cation, very few studies have looked at its application
to NLP. To this end, an effort is made to address event
detection in online social networks using a low-resource
learning idea, namely few-shot learning, in order to free
ourselves from computation-intensive activities, suffer
from a scarcity of labelled data, and extend current event
detection to new event categories.

III. PROBLEM DEFINITION

This work presents event detection in Twitter
data exploiting few shot learning data, often
known as few-shot learning. The problem under
consideration is an event categorisation problem
with the purpose of learning a function f:
f(dataset, supportset, supportsample) → Query.
Labeled dataset is divded into Datasettrain for training
the data and optimising parameters, Datasetvalidation
for selecting the best hyper-parameters and Datasettest
to evaluate the efficacy of the model.
In this work, episodic training statergy [18] is opted that
has proved to be effective in few-shot learning scenario
as depicted in figure1. A label set (Label) is sampled
from the training dataset for each training episode,
followed by a support set and a query set. Finally,
the support and query sets are fed into the model to
minimise the loss. Support set in an episode contains
Ni tweet samples for each class Ci. Then, there is
unlabelled tweets to classify, and query ∈ Label is the
output label followed by the prediction of the function
f. Important terminology regarding few-shot learning is:
N-way K-shot. N-way represents the number of classes
(events) in the support set and number of samples
(tweets) in a particular class are considered as K-shot.
In this work, model performance is evaluated on N =3
or 4 and K =5 or 10.

Query Set

Q1 Q2 QN

Query Set

Q1 Q2 QN

Testing TaskTraining Task

Support Set

Episode 1

Sa1 Sa2 SaK

Sb1 Sb2 SbK

SN1 SN2 SNK

Support Set

Episode 2

Sc1 Sc2 ScK

Sd1 Sd2 SdK

SN1 SN2 SNK

Query Set

Q1 Q2 QN

Support Set

Episode 1

Sx1 Sx2 SxN

Sy1 Sy2 SyN

SN1 SN2 SNK

N= Total #classes in a support
set

K= Total #instances from each
class in support set

Fig. 1: Episodes in few-shot learning that contain
support sets and query sets

IV. PROPOSED MODEL

This section presents a detailed description of our
proposed approach, proBE, which consists of various
steps such as Tweet Encoding, Prototype Model, Atten-
tive Prototype. The overall architecture is shown in figure
2. Further, details of individual functional component is
presented in the following sub-sections.

A. Tweet Encoding

Tweet encoding consists of an embedding layer where,
BERTweet is used to capture the contextual information
of a tweet contained in a support set, keeping in mind
the need to grasp the context of input owing to small
training data sets. Given a tweet of input support set t
contains t= w1, w2,, wm words. The raw text will
be encoded to vector embeddings using an embedding
layer.

1) Embedding Layer: Recently, BERT has gained
immense popularity and success in NLP tasks as it
is based on Transformer architecture and capable
of capturing contextualised representations with con-
sideration of context of the words in a sentence from
both forward and backward directions. We are largely
dealing with unstructured data when it comes to online
social networks, and one of the obstacle is transforming
unstructured information into contextual representations.
BERTweet model is specially designed for dealing with
Twitter data. It addresses all the challenges associated
with amorphous data available on Twitter, due to casual
use of words, short text and inbuilt Twitter features
such as hashtags and emoticons, all of which contribute
significantly to the interpretation of an event. Hashtags
are sometimes responsible for the event propagation,
and for the most part, they are user-created, with little
significance if not addressed with context to the tweet.
Hashtags are not eliminated during the pre-processing
step since they play a significant role in Twitter data,
and BERTweet is capable of recognising the Twitter
structure, which leads to the identification of special
linguistic and contextual information unique to Twitter
data.
BERTweet is a pre-trained masked language model

S1

S2

S3

S4

Q

Support samples

BERTweet
Encoding

Query samples

Attentive Prototype

TLA

TLA

TLA

TLA

FLA

FLA

FLA

FLA

At
te

nt
io

n
sc

or
e

Classification

output

+ Ci
Distance

TLA: Tweet-level
Attention

FLA: Feature-level
Attention

Data Pre-
processing

Pre-processed
tweets

Fig. 2: Workflow of the proposed proBE framework

[24] utilizing BERT having the same architecture as
BERTbase and trained using RoBERTa pre-training
procedure. A tweet (t) with raw tweet text with m words
will be represented in vector form with the help of
BERTweet as mentioned in equation 1 and 2.

Et = BERTweet(tweet) (1)

tweet(t) = w1, w2,, wm (2)

Where, Et is embedded tweet sample ∈ Rd where, d is
the dimension of the vector.
Finally, to get the meaningful representation of t, en-
coded representations from [CLS] token, which is a
special token that captures contextual information from
the entire input text, is extracted as it encapsulates the
aggregate information from the entire input sequence and
will be passed to the next layer.

B. Prototype Model

Prototype encoder for few shot learning is first intro-
duced by the authors of [19], where it is described as a
concept to compute a representative vector, also called
a Prototype (Proc) for all the samples of the support set
and which can be generated by averaging the vectors
of the samples for each class C ∈ Call as calculated in
equation 3.

Proci =
1

mi

mi∑
j=1

tji (3)

Where, Proci is the prototype for a class Ci that is
computed for the samples of support set (s) of the class.
mi are the total number of tweets in the support set of
the class Ci and (tji) is tweet embedding with the help
of BERTweet. Further, probabilities for the query tweet
with the help of distance function can also be computed
with the help of equation 4.

Prob(y = Ci | (q, p),Support)

=
exp(−dist((q, p),Proci))∑|Call|

k=1 exp(−dist((q, p)),Prock)

(4)

Where dist(.,.) is the distance function between two
provided vectors, namely the class prototype and the
query tweet. Euclidean distance is utilised for distance
computation since the authors of [19] discovered that
it outperforms all other existing distance measures with
respect to a prototype network.
In the traditional setup of prototype networks, all the
samples of the support set are treated identically. How-
ever, in real world scenario, not all the samples are
contributing to classification equally. Specifically, when
it comes to Twitter, not every tweet is equally infor-
mative and due to the difference in representation of
different support samples, the average (prototype) can
be far away from the representation of each of the
prototype. Likewise, some features are more prominent
in discriminating the class than the other not so important
features. To this end, an attention mechanism is applied
to highlight all the contributing features as described in
following sub-sections.

1) Attentive Prototype: Attention entails focusing on
one or more components while neglecting others. Con-
centrating on a single unit increases machine learning
models’ intelligence. In general, classification systems
describe data as a numeric vector of low-level features,
with each feature given the same weight regardless of
its ability to conceptualise the data. For attention mech-
anisms such as words, phrases, and sentences, several
granularity levels can be used. The attention layer is
made up of an alignment layer, attention weights, and
a context vector. The output of the attention mechanism
is a weighted sum of all elements in the encoded vector.
In attentive prototypical networks, tweet-level and fea-
ture level attention are employed with the conventional

prototypical network to enrich the features and incor-
porate semantics and context to the conventional way.
Given that few-shot learning is intended to work with
little quantities of training data, semantic and contextual
consideration should be prioritised.

2) Tweet-level Attention: In tweet-level attention, a
sentence level attention is proposed to highlight the
important tweets in an support set as not all the tweets
of support contribute equally to prototype of a set
and due to the lack of support data in FSL (Few-shot
Learning) scenario, representation of one tweet is far
from another representation create a huge deviation from
the prototype. The idea is to highlight and use those
tweets that are relevant and informative while ignoring
that are not catering to the classification. Following the
concept, relevancy based score will be assigned. For
tweet-level attention, an attention model [25] is used to
extract contributing tweets and gather them to produce
a more informative vector. The hidden representation
of a feature j, fj , is fed into a feed-forward neural
network to learn f ′

j , an encoded representation given
in equation 5. Then, similarity will be calculated by
applying the dot product between f ′

j and a context vector
f ′w which is randomly initialised and learned during the
training process. Finally, softmax function mentioned in
equation 6 is used to calculate the attention score αj of
jth tweet and attention based representation of a tweet
(at) will be calculated with the weighted sum of hidden
representations as mentioned in equation 8.

f ′
j = tanh(Wfj + bw) (5)

αj =
exp(f ′

jf
′w)∑

(exp(f ′
jf

′w))
(6)

Finally, equation 3 is replaced with equation 8.

Proci =

mi∑
j=1

αjtji (7)

3) Feature-level Attention: Feature-level attention is
an attempt to include features only with significant
importance and remove the confusing features that can
cause hinderance in further classification as some fea-
tures have the capability to differentiate the class on
feature level from other classes. An attention mechanism
similar to [26] is applied for a class feature extractor.
To this end, max pooling layer is applied over every
sample (j) of every class(Ci) of support set (s) in order
to obtain a fresh feature map. Further, three convolution
layer will be applied to get a parameter (βi) (score
vector of class Ci) as described in figure 3. To save
the model from the feature scarcity due to the less
number of samples in support set from each class, more
discriminating dimensions in feature space are extracted

and new distance function with score vector of the class
is defined in equation 8

distance(Ci, query) = βi · (Ci − query2)
2 (8)

Where, βi is the score vector of the class is calculated
with the help of feature-level attention. (query) is the
query vector passed through the tweet-level attention.
This attention will help in giving more score for discrim-
inatory dimensions. With the multiplication of attention
scores to the squared differences, distance metrics will
be changed to fit the given classes and support instances.
Finally, the new distance measure will calculate the
attentive distance between all prototypes and a target
query vector and assign the query to the closest one.

ReLU ReLU

KS-Kernel Size, St- Stride, OS- Output Size

1st Conv layer

KS-Kx1,
St-1x1,

OS- Kxdx32

2nd Conv layer

KS-Kx1,
St-1x1,

OS- Kxdx64

3rd Conv layer

KS-Kx1,
St-Kx1,

OS- 1xdx1
ReLU

βi
score vector
for class i

Fig. 3: Feature attention architecture

V. EXPERIMENTAL SETUP AND RESULTS

This section presents the experimental details of
proBE model, including a brief overview of the dataset,
parameters, and evaluation metrics, followed by the
evaluation findings, comparison analysis, and ablation
study.

A. Dataset and Parameters
The proposed approach, proBE is evaluated on real

world tweet disaster datasets named CrisisLexT26 [27]
and CrisisLexT6. Dataset contains tweets for 26 and 6
disaster events, respectively. Each tweet is labelled with
information source, information type, relevancy and
Informativeness. Tweets that are related and informative
are considered for evaluation. To avoid class imbalance,
the minimum quantity of tweets for all events was
evaluated, and around 400 tweets were chosen. Some of
the events, such as the Venezuela refinery event 2013,
have non-English tweets. When non-english tweets are
eliminated, the amount of English tweets in such events
is drastically reduced and thus removed. Following
such filtration, the dataset contains 18 events, each
with 400 tweets from CrisisLex26 and only two events
are different in CrisisLex6 than the other. To this end,
considering both the datasets, 20 events are filtered out
for evaluation with 400 tweets each as shown in the
table I. Data is divided into training, validation and
testing with 60, 20, 20 ratio, respectively. Due to the
Few-shot learning setting, there is no overlapping in
training, validation and testing classes.

TABLE I: Dataset statistics

Datasets #Events
#Events

after filteration
Total #events Total tweets

Crisis LexT26 26 18
20 8000 (approx)

Crisis LexT6 06 02

1) Pre-processing: Tweets contain noise in the form
of slang and casual language, making them unsuitable
for direct feeding to the model. The data must be pre-
processed before it can be fed into the model. Cleaning
methods include the removal of punctuation, URLs,
retweets, duplicate tweets, digits, white spaces, and other
inappropriate data. Following that, non-english tweets
were filtered out and the remaining tweets will be
converted to lower case, and any residual stop-words will
be removed with spaCy1.
The model described in the section IV is implemented
in python 3.10 and is executed using open source library
PyTorch2 which is mainly used for experimental evalua-
tion of the deep learning models. Few-shot model is eval-
uated using 3-way 5 or 10 shots and 4-way 5 or 10 shots.
Embedding vectors are initialised with BERTweet with
the dimensions of 768. BERTweet is trained on large
Twitter corpus. Above model is trained using Stochas-
tic Gradient Decent (SGD) optimiser. Several tests are
carried out and the learning rate is set to 0.1, decaying
after 1000 iterations. Model training is also verified for
numerous sets of iterations before deciding on 4000
iterations for training and 1500 iterations for validation.
A summary of hyper-parameters are presented in table
II.

TABLE II: A summary of hyper-parameter settings

Hyperparameter Values
Batchsize 5
Dropout 0.2
filters (CNN) 64
Window size (CNN) 3
Weight decay 10−5

Learning rate decay 0.1

B. Evaluation Metrics

The proposed model is evaluated using four standard
evaluation metrics: –precision, recall, F-score
and accuracy where, precision can be calculated as
number of true positives (TP) to the total number of
true positive and false positives (FP). Recall is measured
by comparing the total number of true positives across

1https://spacy.io/
2https://pytorch.org/

all classes to the total number of true positives and
false negatives (FN) across all the classes. Precision
is appropriate when minimising false positives is the
goal, while recall is appropriate when minimising false
negatives is the goal. Further, F-score is the harmonic
mean of the these above two factors. Finally, accuracy is
defined as number of correct predictions to total number
of predictions.
Results are measured in above mentioned metrics as
described in equations 9, 10 , 11 and 12, respectively.

Precision =
TP

TP+FP
(9)

Recall =
TP

TP+ FN
(10)

F-Score = 2× Precision×Recall

Precision+Recall
(11)

Accuracy =
TP+TN

TP+TN+FP+FN)
(12)

Where, TP represents the total number correctly classi-
fied event query tweets. FP represents the total number of
incorrectly classified event query tweets. TN represents
the total number of correctly classified non-event query
tweet. Finally, FN represents total number of incorrectly
classified non-event query tweet.

C. Evaluation Results and Comparative Analysis

All of the measures listed above are chosen to assess
the model’s performance. When dealing with new data
in testing, only accuracy is not ideal since it just analyses
the amount of correct predictions and does not consider
the relative value of false positives and false negatives.
To this end, it is crucial to take all measures into account
in order to obtain a comprehensive understanding of the
performance across different classes. Furthermore, state-
of-the-art methods are also considered for comparison
and proposed approach is compared with vanilla pro-
totype [19] where, the authors introduced metric-based
prototype networks for few-shot learning based on the
notion that each class can be represented by the mean
of its examples in a representation space learned by a
neural network . Models are also compared to other
encoder, acknowledging the significance of employing

TABLE III: Evaluation results of proposed approach in comparison to the state-of-the-arts on 3-way 5 and 10 shot

Approach 3-way 5 shot 3-way 10 shot
Model Encoder Accuracy F-score Precision Recall Accuracy F-score Precision Recall

proBE BERTweet 70.16 79.00 80.00 80.00 76.18 81.00 80.00 80.00
Prototypical [19] BERTweet 61.39 60.00 67.00 60.00 63.26 69.00 70.00 69.00
proBE CNN 33.34 17.00 78.00 33.00 33.35 17.00 33.00 78.00
Prototypical [19] CNN 33.30 26.00 56.00 33.00 33.40 26.00 56.00 33.00

TABLE IV: Evaluation results of proposed approach in comparison to the state-of-the-arts on 4-way 5 and 10 shot

Approach 4-way 5 shot 4-way 10 shot
Model Encoder Accuracy F-score Precision Recall Accuracy F-score Precision Recall

proBE BERTweet 61.05 65.00 67.00 65.00 69.26 77.00 77.00 77.00
Prototypical [19] BERTweet 50.05 57.00 54.00 55.00 51.33 51.00 53.00 51.00
proBE CNN 24.99 20.00 44.00 25.00 25.01 23.00 24.00 26.00
Prototypical [19] CNN 25.00 10.00 81.00 25.00 25.11 10.00 81.00 25.00

an encoder to represent the text as an early step that can
effect performance. CNN is chosen for comparison as
mentioned by the authors of [26] where, text is initially
embedded with GloVe and then CNN is applied to get
the aggregated hidden annotation of each word and its
position by a convolution kernel with the window size 3.
Efficacy of proposed approach with mentioned baseline
methods is represented in tabular form in tables III
and IV. It can be observed that our approach signif-
icantly outperforms the baselines, and the addition of
context with the help of BERTweet makes a substantial
difference because contextual representation becomes
more effective when dealing with limited information. In
addition, training and validation accuracy comparison is
also depicted in figure 4 and clearly shows that our model
clearly outperforms the training and validation accuracy
as well.

0

10

20

30

40

50

60

70

80

90 3-way 5 shot

Training accuracy

Validation accuracy

0

20

40

60

80

100 3-way 10 shot

Training accuracy

Validation accuracy

0

10

20

30

40

50

60

70

80

90 4-way 5 shot

Training accuracy

Validation accuracy

0

10

20

30

40

50

60

70

80

90 4-way 10 shot

Training accuracy

Validation accuracy

Fig. 4: Training vs validation accuracy comparison
with state-of the-arts on 3 and 4-way(5 and 10 shot)

VI. CONCLUSION AND FUTURE WORK

This study sought to propose a solution to the problem
of event detection in online social networks following
the failure of labelling the enormous data due to high
cost of annotation and inability of detecting new events.
The objective is to employ less labelled data (few
samples) and generalise more to identify new events
in the amorphous data of online social networks. To
this end, a model is proposed where, the encoding of
tweets is highlighted first as it is the integral aspect of
data representation. BERTweet is employed for tweet
encoding which is specifically trained on Twitter data
to capture context utilising Twitter’s built-in and differ-
entiating features. Key characteristics of social network
data such as hashtags and mentions are also incorporated
in data representation due to their indispensable role in
Twitter data. The attentive prototype module is subse-
quently employed in the following step, where, tweet
and feature attention are applied with the assumption
that some tweets and features have more information and
context and hence deserve more attention. The strategy
of drawing data for training and testing using different
distributions in few-shot learning aids to help detecting
new events and also address the covariant-shift issue that
can be seen in dynamic data of online social networks.
Proposed model has shown significantly better results
as compared to baselines in unstructured and informal
social network data. Exploration of more informative
feature extraction, such as using a graph-like structure to
include other aspect of online social networks and extract
information at a deeper level, as well as application of
the work in the real world, could be a potential future
work.

REFERENCES

[1] C. Li, A. Sun, and A. Datta, “Twevent: segment-based event
detection from tweets,” in Proceedings of the 21st ACM inter-
national conference on Information and knowledge management,
2012, pp. 155–164.

[2] K. Morabia, N. L. B. Murthy, A. Malapati, and S. Samant,
“Sedtwik: segmentation-based event detection from tweets us-
ing wikipedia,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Student Research Workshop, 2019, pp. 77–85.

[3] H. Hettiarachchi, M. Adedoyin-Olowe, J. Bhogal, and M. M.
Gaber, “Embed2detect: temporally clustered embedded words for
event detection in social media,” Machine Learning, vol. 111,
no. 1, pp. 49–87, 2022.

[4] S. Sharma, M. Abulaish, and T. Ahmad, “Kevent–a semantic-
enriched graph-based approach capitalizing bursty keyphrases for
event detection in osn,” in 2022 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT). IEEE, 2022, pp. 588–595.

[5] M. Abulaish, S. Sharma, and M. Fazil, “A multi-attributed graph-
based approach for text data modeling and event detection in twit-
ter,” in 2019 11th International Conference on Communication
Systems & Networks (COMSNETS). IEEE, 2019, pp. 703–708.

[6] H. Ji and R. Grishman, “Refining event extraction through cross-
document inference,” in Proceedings of ACL-08: Hlt, 2008, pp.
254–262.

[7] V. D. Lai, “Event extraction: A survey,” arXiv preprint
arXiv:2210.03419, 2022.

[8] M. Hasan, M. A. Orgun, and R. Schwitter, “A survey on real-
time event detection from the twitter data stream,” Journal of
Information Science, vol. 44, no. 4, pp. 443–463, 2018.

[9] F. Atefeh and W. Khreich, “A survey of techniques for event
detection in twitter,” Computational Intelligence, vol. 31, no. 1,
pp. 132–164, 2015.

[10] D. Ahn, “The stages of event extraction,” in Proceedings of the
Workshop on Annotating and Reasoning about Time and Events,
2006, pp. 1–8.

[11] Y. Hong, J. Zhang, B. Ma, J. Yao, G. Zhou, and Q. Zhu,
“Using cross-entity inference to improve event extraction,” in
Proceedings of the 49th annual meeting of the association for
computational linguistics: human language technologies, 2011,
pp. 1127–1136.

[12] T. Nguyen and R. Grishman, “Graph convolutional networks with
argument-aware pooling for event detection,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[13] S. Liu, Y. Chen, K. Liu, and J. Zhao, “Exploiting argument
information to improve event detection via supervised attention
mechanisms,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), 2017, pp. 1789–1798.

[14] Y. Chen, L. Xu, K. Liu, D. Zeng, and J. Zhao, “Event extraction
via dynamic multi-pooling convolutional neural networks,” in
Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long
Papers), 2015, pp. 167–176.

[15] V. D. Lai and T. H. Nguyen, “Extending event detection
to new types with learning from keywords,” arXiv preprint
arXiv:1910.11368, 2019.

[16] S. Deng, N. Zhang, J. Kang, Y. Zhang, W. Zhang, and H. Chen,
“Meta-learning with dynamic-memory-based prototypical net-
work for few-shot event detection,” in Proceedings of the 13th
International Conference on Web Search and Data Mining, 2020,
pp. 151–159.

[17] S. Thrun, “Is learning the n-th thing any easier than learning the
first?” Advances in neural information processing systems, vol. 8,
1995.

[18] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” Advances in neural information
processing systems, vol. 29, 2016.

[19] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” Advances in neural information processing
systems, vol. 30, 2017.

[20] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural
networks for one-shot image recognition,” in ICML deep learning
workshop, vol. 2. Lille, 2015.

[21] M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro,
H. Wang, and B. Zhou, “Diverse few-shot text classification with
multiple metrics,” arXiv preprint arXiv:1805.07513, 2018.

[22] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lilli-
crap, “Meta-learning with memory-augmented neural networks,”
in International conference on machine learning. PMLR, 2016,
pp. 1842–1850.

[23] W. Liu, J. Pang, N. Li, F. Yue, and G. Liu, “Few-shot short-
text classification with language representations and centroid
similarity,” Applied Intelligence, pp. 1–12, 2022.

[24] M. M. A. Qudar and V. Mago, “Tweetbert: a pretrained language
representation model for twitter text analysis,” arXiv preprint
arXiv:2010.11091, 2020.

[25] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy,
“Hierarchical attention networks for document classification,”
in Proceedings of the 2016 conference of the North American
chapter of the association for computational linguistics: human
language technologies, 2016, pp. 1480–1489.

[26] T. Gao, X. Han, Z. Liu, and M. Sun, “Hybrid attention-based
prototypical networks for noisy few-shot relation classification,”
in Proceedings of the AAAI conference on artificial intelligence,
vol. 33, 2019, pp. 6407–6414.

[27] A. Olteanu, C. Castillo, F. Diaz, and S. Vieweg, “Crisislex: A
lexicon for collecting and filtering microblogged communications
in crises,” in Proceedings of the international AAAI conference
on web and social media, vol. 8, no. 1, 2014, pp. 376–385.

	Introduction
	Related Work
	Problem Definition
	Proposed Model
	Tweet Encoding
	Embedding Layer

	Prototype Model
	Attentive Prototype
	Tweet-level Attention
	Feature-level Attention

	Experimental Setup and Results
	Dataset and Parameters
	Pre-processing

	Evaluation Metrics
	Evaluation Results and Comparative Analysis

	Conclusion and Future Work
	References

